Mapping of a copper-binding site on the small CP12 chloroplastic protein of Chlamydomonas reinhardtii using top-down mass spectrometry and site-directed mutagenesis.
نویسندگان
چکیده
CP12 is a small chloroplastic protein involved in the Calvin cycle that was shown to bind copper, a metal ion that is involved in the transition of CP12 from a reduced to an oxidized state. In order to describe CP12's copper-binding properties, copper-IMAC experiments and site-directed mutagenesis based on computational modelling, were coupled with top-down MS [electrospray-ionization MS and MS/MS (tandem MS)]. Immobilized-copper-ion-affinity-chromatographic experiments allowed the primary characterization of the effects of mutation on copper binding. Top-down MS/MS experiments carried out under non-denaturing conditions on wild-type and mutant CP12-Cu(2+) complexes then allowed fragment ions specifically binding the copper ion to be determined. Comparison of MS/MS datasets defined three regions involved in metal ion binding: residues Asp(16)-Asp(23), Asp(38)-Lys(50) and Asp(70)-Glu(76), with the two first regions containing selected residues for mutation. These data confirmed that copper ligands involved glutamic acid and aspartic residues, a situation that contrasts with that obtaining for typical protein copper chelators. We propose that copper might play a role in the regulation of the biological activity of CP12.
منابع مشابه
CP12 from Chlamydomonas reinhardtii, a permanent specific "chaperone-like" protein of glyceraldehyde-3-phosphate dehydrogenase.
A new role is reported for CP12, a highly unfolded and flexible protein, mainly known for its redox function with A(4) glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Both reduced and oxidized CP12 can prevent the in vitro thermal inactivation and aggregation of GAPDH from Chlamydomonas reinhardtii. This mechanism is thus not redox-dependent. The protection is specific to CP12, because other ...
متن کاملDynamics of the intrinsically disordered protein CP12 in its association with GAPDH in the green alga Chlamydomonas reinhardtii: a fuzzy complex.
CP12 is a widespread regulatory protein of oxygenic photosynthetic organisms that contributes to the regulation of the Calvin cycle by forming a supra-molecular complex with at least two enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK). CP12 shares some similarities with intrinsically disordered proteins (IDPs) depending on its redox state. In this study, ...
متن کاملRegulation by glutathionylation of isocitrate lyase from Chlamydomonas reinhardtii.
Post-translational modification of protein cysteine residues is emerging as an important regulatory and signaling mechanism. We have identified numerous putative targets of redox regulation in the unicellular green alga Chlamydomonas reinhardtii. One enzyme, isocitrate lyase (ICL), was identified both as a putative thioredoxin target and as an S-thiolated protein in vivo. ICL is a key enzyme of...
متن کاملDifferential Expression of the Chlamydomonas [FeFe]-Hydrogenase-Encoding HYDA1 Gene Is Regulated by the COPPER RESPONSE REGULATOR11[C][W]
The unicellular green alga Chlamydomonas reinhardtii adapts to anaerobic or hypoxic conditions by developing a complex fermentative metabolism including the production of molecular hydrogen by [FeFe]-hydrogenase isoform1 (HYDA1). HYDA1 transcript and hydrogenase protein accumulate in the absence of oxygen or copper (Cu). Factors regulating this differential gene expression have been unknown so ...
متن کاملThe small protein CP12: a protein linker for supramolecular complex assembly.
CP12 is an 8.5-kDa nuclear-encoded chloroplast protein, isolated from higher plants. It forms part of a core complex of two dimers of phosphoribulokinase (PRK), two tetramers of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and CP12. The role of CP12 in this complex assembly has not been determined. To address this question, we cloned a cDNA encoding the mature CP12 from the green alga Chla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 419 1 شماره
صفحات -
تاریخ انتشار 2009